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4. Real-Time Correction of Spatially Nonuniform Bias in Radar

Rainfall Data Using Rain Gauge Measurements

ABSTRACT

A procedure for real-time correction of spatially nonuniform bias in radar rainfall data
using rain gauge measurements is described.  Developed to complement the existing gauge-based
bias correction procedures used in the National Weather Service (NWS), the proposed procedure
is a generalized local bias estimator that may be used under varying conditions of rain gauge
network density and types of rainfall.  To arrive at the procedure, the correction problem is
formulated as space-time estimation of radar and bin-averaged gauge rainfall from radar rainfall
data and rain gauge measurements, respectively, at all hours up to and including the current hour. 
The estimation problem is then solved sub-optimally via a variant of exponential smoothing.  To
evaluate the procedure, parameter estimation and true validation were performed using hourly
radar rainfall and rain gauge data from the Arkansas-Red Basin River Forecast Center (ABRFC)
area.  The results indicate that the proposed procedure is generally superior to mean field bias
correction, and that the improvement is particularly significant in the cool season.

4.1 Introduction

Since the introduction of weather radars in operational hydrologic forecasting, real-time
correction of systematic biases in radar rainfall data using rain gauge measurements has been
widely recognized as one of the most important steps in radar-based rainfall estimation (Ahnert
et al. 1986, Collier 1986, Smith and Krajewski 1991).  Since the first deployment of the Weather
Surveillance Radar - 1988 Doppler version (WSR-88D) in 1991, two approaches have emerged
for gauge-based bias correction in the National Weather Service (NWS); mean-field bias
correction (Ahnert et al. 1986, Smith and Krajewski 1991, Anagnostou et al. 1998, Seo et al.
1999) and local bias correction (Bill Lawrence, personal communications).  The former, in one
formulation or another (Smith and Krajewski 1991, Seo et al. 1997, Seo et al. 1999), has been in
operation since 1993 at a number of River Forecast Centers (RFC) as a part of the software
application known as Stage III (Hudlow 1988, Fulton 1998).  The latter (see Appendix A) has
been in operation at the Arkansas-Red Basin RFC (ABRFC) since 1996 as a part of the software
application known as Process 1 (P1).

Due to significant differences in data processing steps before and after bias correction
between Stage III and P1, it is difficult to rigorously compare the two bias correction procedures
based on evaluation of the operationally produced Stage III and P1 products (Young et al. 2000). 
Nevertheless, operational experience does confirm the long-held expectations that, though
effective in removing biases that are spatially uniform over the entire radar umbrella due, e.g., to
lack of radar calibration and inappropriate Z-R parameters, mean field bias correction is of
limited utility (and, in some situations, counterproductive) if biases are spatially nonuniform (Seo
et al. 1999, see also Section 8), and that local bias correction is very effective in gauge-rich areas,
particularly in widespread stratiform rainfall in the cool season (Bill Lawrence, personal
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communications).
Despite the generally positive operational experience at ABRFC, implementation of the

local bias correction procedure used in P1 in other parts of the country, particularly those that are
gauge-poor, could not be pursued rigorously because of a number of limitations inherent in the
procedure.  For example, the spatial interpolation procedure does not take into account either the
sampling differences between the two sensors or the uncertainties in the bias estimate due to lack
of sample size.  Consequently, the bias estimates are susceptible to large sampling errors.  Also,
the spatial interpolation is based solely on the triangular geometry of the rain gauge network (see
Appendix A), and hence does not account for either the spatial scale of rainfall or the attendant
dependence of sampling errors on the spatial configuration of the gauge network.  Consequently,
the procedure is susceptible to unevenness in and sparsity of the rain gauge network.

The purpose of this paper is to describe a new procedure for real-time correction of
spatially nonuniform bias in radar rainfall data using rain gauge measurements.  Based on the
operational experience with the existing procedures summarized above, the proposed procedure
is intended to be a generalized local bias estimator that may be used under varying conditions of
gauge network density and types of rainfall.  Pending further evaluation, the procedure is to be
implemented operationally at the River Forecast Centers (RFC) across the country as a
component in the RFCWide Multisensor Precipitation Estimator (RFCWide MPE) (Breidenbach
et al. 2000) of the Advanced Weather Interactive Processing System (AWIPS).

It is noted here that the formulation of the proposed procedure, as will be seen, may not
necessarily be the most appropriate for dealing with range-dependent biases due to nonuniform
vertical profile of reflectivity (VPR) such as that due to bright band enhancement.  Because they
originate from the reflectivity morphology of precipitating clouds as observed through the
sampling geometry of radar, range-dependent biases should be corrected first by the use of
volume scan reflectivity data (Andrieu and Creutin 1995, Seo et al. 2000) before correction of
residual biases may be attempted using rain gauge measurements.  We note here that work is
under way to implement a procedure for real-time correction of range-dependent bias due to
nonuniform VPR (Seo et al. 2000) in the WSR-88D Open Radar Product Generator (ORPG)
(Saffle and Johnson 2000) in the very near future.  In the interim, the proposed procedure is to
serve as an all-purpose algorithm for correcting, to the extent possible, any biases that are
spatially nonuniform regardless of range dependency (i.e. except for those due to beam
overshooting: see Section 2).

The organization of this paper is as follows.  Section 2 describes the problem of local bias
correction.  Section 3 formulates the correction problem as space-time estimation.  Section 4
describes the procedure used to solve the estimation problem.  Section 5 describes the radar and
rain gauge data used for parameter estimation and validation.  Section 6 describes how the
parameters are estimated via sensitivity analysis.  Section 7 describes the validation experiment. 
Section 8 summarizes the results.  Section 9 provides conclusions and future research
recommendations.

4.2 Problem Description

We define the local bias at the radar bin centered at location u0 at hour k, $0k, as follows:
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$0k / G0k / R0k (1)

where G0k and R0k denote the hourly accumulations of bin-averaged gauge and radar rainfall
(mm), respectively, at the k-th hour at the radar bin centered at u0.  The gauge rainfall, G0k, in
Eq.(1) may be expressed as:

G0k = 5A05
-1 I Pk(u) du (2)

                    A0

where 5A05 denotes the area of the radar bin centered at u0, and Pk(u) denotes the hourly gauge
rainfall (mm) at location u in A0 (i.e. if a gauge existed at that location) at the k-th hour.  For the
WSR-88D Digital Precipitation Array (DPA), also known as the Hourly Digital Precipitation
(HDP), product (Klazura and Imy 1993), the size of the radar bin is approximately 4x4 km2 in
mid-latitudes.  Note that, as defined in Eq.(2), G0k may be considered measurable only if there
exists a sufficiently large number of gauges within A0 to capture the micro-scale variability of
rainfall (Ciach and Krajewski 1999).

The radar rainfall, R0k, in Eq.(1) may be expressed as:

R0k = I Q0(t) dt (3)
        T

where T denotes the duration of an hour and Q0(t) denotes the bin-averaged radar rain rate (mm
hr-1) at time t at the bin centered at location u0.  In Eq.(3), it is assumed that Q0(t) is free of spatial
sampling errors.  In reality, however, radar rainfall data are subject to various sources of such
errors: 1) at far ranges, (bin-averaged) radar rainfall estimates may be based only on a few or
even less (polar) data points, 2) the navigation of the beam may be deviating from that in the
standard atmosphere due to strong temperature and/or moisture gradient (Doviak and Zrnic
1984), and 3) rainfall aloft as observed by the radar may be advecting significant distances before
reaching the ground (Wilson and Brandes 1979).  Even if there are no spatial sampling errors, the
radar rainfall estimate of R0k in Eq.(3) is always subject to temporal sampling errors because,
with a scanning radar, the temporal integration in Eq.(3) can only be approximated by a discrete
summation (Fabry et al. 1994).

Because the gauge measurement of G0k is subject to spatial sampling errors due to micro-
and macro-scale variabilities of rainfall, and the radar estimate of R0k is subject to spatial and
temporal sampling errors from various sources as described above, $0k in Eq.(1) is not a
deterministic quantity and, as such, can only be estimated in a statistical sense.  Given that the
purpose of bias correction is to render the adjusted radar rainfall estimate unbiased against the
bin-averaged gauge rainfall at least in the mean sense, the simplest form that a local bias
estimator may assume is the following:

$0k
* = E[G0k] / E[R0k] (4)

where the asterisk signifies that the variable superscripted is only an estimate and E[] denotes the
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expectation operator.  The bias-corrected radar rainfall estimate at hour k at the bin centered at u0

is then given by the product of $0k
* and r0k, where r0k denotes the raw radar rainfall estimate at

hour k at the bin centered at u0.
As is, however, Eq.(4) is not wholly appropriate for bias correction of radar rainfall data

because it reflects not only the bias in radar rainfall estimates given that the radar successfully
detected rainfall (the first term in Eq.(5) below) but also that in radar detection of rainfall (the
second term in Eq.(5)):

          E[G0k*G0k>0]  Pr[G0k>0]
$0k

* = ))))))))))))A))))) (5)
          E[R0k*R0k>0]  Pr[R0k>0]

where Pr[] denotes the probability of occurrence of the event bracketed.  Consequently, when and
where beam overshooting does occur, bias correction based on Eq.(4) will necessarily
overcorrect the radar rainfall estimates that are free of beam overshooting to make up for the
amount of rainfall unaccounted for by radar due to beam overshooting.  Because correcting
biases in radar detection of rainfall is an extremely difficult problem for which no practical
solutions currently (if ever) exist, the only operationally viable option is to avoid dealing with
such biases altogether by limiting the use of radar rainfall data to within the ‘effective coverage’
of radar where Pr[G0k>0].Pr[R0k>0] holds (i.e. where radar can consistently ‘see’ rainfall: see
Section 5).  Under this restriction, we may drop the second term in Eq.(5) to write:

$0k
* = E[G0k*G0k>0] / E[R0k*R0k>0] (6)

Because the bias estimate, $0k
*, is expressed as a ratio, particular care must be taken to

avoid inadvertently introducing biases in estimation of the conditional expectations in Eq.(6).  In
the next section, we describe how we arrive, in light of the above observations, at the particular
form and choice of the estimator used in the proposed procedure.
 
4.3 Estimation Approach

Because bias estimation as defined in Eq.(6) is a problem of inferring first-order moments
of two independent observations of rainfall, it behooves to estimate them independently of each
other based exclusively on gauge and radar rainfall data, respectively.  In this way, estimation of
mean gauge rainfall does not require any knowledge, a priori or otherwise, about the mean radar
rainfall, and vice versa.  Accordingly, to estimate E[G0k*G0k>0] for an ungauged bin, some sort
of spatial averaging of neighboring rain gauge measurements is necessary.  Furthermore, because
the number of rain gauge measurements available in real time is very often very small, some sort
of temporal averaging may also be necessary to improve the statistical reliability of the bias
estimate (even if it may mean having to compromise the unbiasedness to some degree: see
Section 8).  With these observations, we expand Eq.(6) to write:
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          E[G0k*G0k>0, Gij, i=1,...nj, j=1,...,k, Gij>0]
$0k

* = ))))))))))))))))))))))))))))) (7)
          E[R0k*R0k>0, Rij, i=1,...nj, j=1,...,k, Rij>0]

where Gij and Rij, i=1,...nj, j=1,...,k, denote the gauge and radar rainfall, respectively, in the
neighborhood of u0 at the current and the preceding hours, and nj denotes the number of positive
radar-gauge pairs available at the j-th hour.  Adopting filtering notations for brevity, we denote
the denumerator and denominator in Eq.(7) as g0k*k and r0k*k, respectively.

In Eq.(7), we could have dropped {Gij>0} and {Rij>0} from the conditioning sets: i.e.,
rather than using only positive rainfall data, use both zero and positive rainfall data to estimate
the conditional mean.  Such a conditioning, however, requires that both the inner variability and
the intermittency of rainfall be taken into account, which not only complicates the estimation
problem significantly but, more importantly, may also introduce biases in $0k

* due to additional
statistical parameterization necessary to handle intermittency (Seo 1998).  Note also in Eq.(7)
that indexing of Rij is identical to that of Gij: i.e., estimate the conditional mean of radar rainfall
using only those data collocated with rain gauge measurements even if there may be many other
radar rainfall data available in the immediate vicinity of the bin centered at u0.  Such selective
sampling of radar rainfall data is necessary to avoid introducing sampling biases in $0k

* due to
spatial variability of rainfall.

To estimate the conditional expectations in Eq.(7), it is tempting to consider optimal
estimation techniques that combine a priori mean from climatology and sample mean from
current observations (see, e.g., Smith and Krajewski 1991).  In that way, the bias estimate may be
rendered, in some objective fashion, to be more reflective of the climatology in gauge-sparse
areas and of the current observations in gauge-dense areas.  For such a purpose, at least two
techniques are available; space-time kriging (Rouhani and Myers 1990, Rouhani and
Wackernagel 1990) based on simple cokriging (Journel and Huijbregts 1978) and multivariate
Kalman filtering (see, e.g., Bras and Rodriguez-Iturbe 1985).  (The two are equivalent under
certain conditions: see Seo and Smith 1996.)  Unfortunately, for purposes of real-time bias
estimation (as opposed to climatological or post analysis), neither technique could be considered
viable.  The reason is that, in the presence of large uncertainties in key micro-physical parameters
such as the Z-R and in the calibration of the radar, it is extremely difficult (if not practically
impossible) to come up with unbiased and informative a priori estimates of conditional mean of
gauge and radar rainfall.  As such, we considered in this work only those techniques that do not
assume any a priori knowledge about the mean.

4.4 Estimation Procedure

Given the above observations, we sought as simple and parsimonious as possible a space-
time estimator that does not assume any a priori knowledge about the mean.  The technique
chosen here is a variant of exponential smoothing (Schweppe 1973) which, in its original form,
has been used in the mean field bias correction procedure (Seo et al. 1999).  The particular
formulation used in this work solves the following constrained weighted least-squares
minimization for R0k (that for G0k is completely analogous: see below):
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              k
min Jr = E e-(k-j)/" [Zrj - Hj R0k]

T Qrj
-1 [Zrj - Hj R0k] (8)

             j=1

subject to R0k = R0(k-1) (9)

where k denotes the current hour, " denotes the memory span (hr), Zrj denotes the (nj)x(1)
measurement vector of radar rainfall data at hour j, [r1j,r2j,...,r(nj)j]

T, Hj denotes the (nj)x(1) unit
vector, [1,1,...,1]T, and Qrj denotes the (nj)x(nj) error covariance matrix at hour j.  In the above, nj

denotes the number of data points at hour j.  Throughout this paper, ‘r’ and ‘g’ signify that the
variable subscripted is associated with radar and gauge rainfall, respectively.

To obtain the recursive solution for R0k, we make use of the fact that, without the
exponential decay term in Eq.(8), the recursive solution to the above minimization problem is
identical to the Kalman filter solution (Schweppe 1973) under the system model of Eq.(9) and
the observation model of:

Zrk = Hk R0k + Vrk (10)

where Vrk denotes the (nk)x(1) error vector with E[Vrk]=0 and E[VrkVrk
T]=Qrk.  Then, by rewriting

the Kalman filter solution first into a non-recursive form while replacing Qrk
-1 with e-(k-l)/" Qrk

-1,
l=1,...,k-1, and then again into a recursive form (see Schweppe 1973 for details), we obtain the
following exponential smoothing solution for R0k, r0k*k, and a measure of uncertainty associated
with it, Er0k*k:

r0k*k = r0(k-1)*(k-1) + Er0k*k Hk
T Qrk

-1(Zrk - Hk r0(k-1)*(k-1)) (11)

Er0k*k
-1 = e-1/" Er0(k-1)*(k-1)

-1 + Hk
T Qrk

-1 Hk (12) 

where the initial conditions are given by r00*0=0 and Er00*0
-1=0 (i.e. completely uninformative

prior).  Note that, because errors are not explicitly modeled in exponential smoothing in favor of
parsimony, Er0k*k is only a relative measure of uncertainty and may not in general be interpreted
as the error variance associated with r0k*k.

The trick that renders Eqs.(11) and (12) a space-time estimator is to define the error vector,
Vrk, in Eq.(10) not as measurement errors as invariably modeled in Kalman filtering but as first-
order differences of rainfall in space, [R1k-R0k,R2k-R0k,...,R(nk)k-R0k]

T.  In this way, the spatial
variability of rainfall may be accounted for in the temporal smoothing process of Eqs.(11) and
(12) while the actual measurement errors in the rainfall data are, for the sake of parsimony,
ignored.  Then, the ij-th entry in the error covariance matrix, Qrk, is given by:

 Rrijk

=Cov[Rik-R0k,Rjk-R0k] (13a)
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=Var[Rk]+Cov[Rik,Rjk]-Cov[Rik,R0k]-Cov[Rjk,R0k] (13b)

=([Rik,R0k]+([Rjk,R0k]-([Rik,Rjk] (13c)

where Cov[] and ([] denote the covariance and the semi-variogram (Journel and Huijbregts
1978), respectively.  It can be shown then (see Appendices B and C) that the resulting space-time
estimation amounts to temporally weight-averaging ordinary kriging estimates from the current
and previous hours according to the ‘age’ of the estimates, and that the resulting estimate, r0k*k, is
unbiased in the mean sense.  The exponential smoothing procedure used to estimate the bin-
averaged gauge rainfall at hour k centered at u0, G0k (see Eq.(2)), is completely analogous to that
for R0k.  The only difference is that, because we are estimating bin-averaged gauge rainfall using
measurements of point gauge rainfall, the exponential smoothing procedure amounts to temporal
averaging of ordinary block kriging estimates rather than that of ordinary punctual kriging
estimates (see Appendix D).

The exponential smoothing procedure described above yields the unbiased minimum-error-
variance solution if the (space- and time-varying) memory span, ", is optimal.  By comparing the
exponential smoothing solution to the Kalman filter solution, it can be easily shown that
specifying " amounts to specifying the ratio of the model uncertainty to the filtered variance in
the Kalman filter solution.  Because we are using exponential smoothing as a simple and
parsimonious (albeit sub-optimal) alternative to Kalman filtering, we are not necessarily
interested here in estimating the optimal ".  (It would entail performing rigorous, and probably
too difficult to be practical, estimation of space- and time-varying parameters, comparable to that
for distributed-parameter Kalman filtering (see, e.g., Tzafestas 1978)).  Instead, we estimate in
this work a sub-optimal " based on the parallel estimation strategy employed in the mean field
bias correction procedure (Seo et al. 1999).  In short, the strategy amounts to performing
exponential smoothing at multiple values of memory span, " (corresponding, e.g., to hourly,
daily, weekly, monthly, seasonal, yearly, etc., scales of temporal aggregation), and selecting,
among the solutions for which the relative measure of uncertainty associated with $0k

*, E$0k*k, is
smaller than some prescribed threshold, E$t, that with the largest E$0k*k as the ‘best’ bias estimate. 
In the above, E$0k*k may be estimated under the assumption that R0k, G0k, and $0k are lognormally
distributed (see Seo et al. 1999 for details).  The rationale behind the strategy is extremely
simple: if the bias estimate based only on the data for the current hour is already of acceptable
statistical reliability, it is your best estimate; if not, successively include the most recent data in
the estimation until the resulting estimate is of acceptable statistical reliability.

Because it is applied to a relative measure of uncertainty, the threshold E$t is a rather
difficult parameter to work with, particularly in an operational setting.  For this reason, rather
than applying a threshold on E$0k*k, here we apply one on the number of effective positive radar-
gauge pairs within the estimation neighborhood of u0, referred to herein as the radius of influence
(see Section 6).  We denote this threshold as Nt.  The effective number of positive radar-gauge
pairs is updated recursively in a manner completely analogous to Eq.(12) (see also Seo et al.
1999):

N0k*k = e-1/" N0(k-1)*(k-1) + Nk (14) 
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where N0k*k denotes the memory span-specific, effective number of positive radar-gauge pairs
within the radius of influence up to and including hour k, and Nk denotes the number of positive
radar-gauge pairs within the radius of influence at hour k.  Once N0k*k and E$0k*k are obtained at
all memory spans for each hour, linear regression is performed to relate N0k*k with E$0k*k for each
memory span.  Then, for each memory span, the threshold on the number of positive radar-gauge
pairs, Nt, is converted via the linear relationship derived above to that on the relative measure of
uncertainty associated with the bias estimate, $0k

*.  Such translation of Nt into E$t is justified by
the fact that a very close one-to-one relationship exists between N0k*k and E$0k*k (Seo et al. 1999).

4.5 Data

To estimate the parameters and to evaluate the procedure, true validation is performed
using hourly radar and rain gauge data from the ABRFC area.  In this section, we describe the
data sets used and how they are prepared for the experiments.

a. Radar Data

The radar data used are the WSR-88D Digital Precipitation Array (DPA) products (Klazura
and Imy 1993) from the WSR-88D sites within and in the vicinity of the ABRFC area (see Fig 1). 
The period covered is May 1, 1996, through April 30, 1999, encompassing three warm (May
through September) and cool (October through April) seasons.  The first year (May of 1996
through April of 1997) and the last two years (May of 1997 through April of 1999) served as the
parameter estimation and the validation periods, respectively.  Because local bias correction is to
be performed over the entire RFC area in a spatially continuous manner (as opposed to one radar
umbrella at a time as in mean field bias correction), it is necessary to mosaic, for each hour, all
available DPAs from all WSR-88D sites over the entire RFC area of 335x159 HRAP2.  An
HRAP bin in the area is approximately 4 km a side.  The steps involved, which are identical to
those used in RFCWide MPE (Breidenbach et al. 2000), are briefly described below.
1) For each radar site, delineate the ‘effective coverage’ of radar for cool and warm seasons

based on long-term statistics of DPA products, such as probability of detection of rainfall and
mean rainfall.  The details are beyond the scope of this paper, and the further interested reader
is referred to Breidenbach et al. (1999).  The effective coverage thus obtained represents the
area within the nominal range of 230 km where the radar can consistently ‘see’ precipitation
so that Pr[G0k>0].Pr[R0k>0] holds (see Eq.(5)).

2) For each radar site, calculate, for each azimuth-range bin, the height (km above MSL) of the
axis of the beam used to obtain the rainfall estimate in the DPA product.  Re-map the resulting
height field onto the HRAP grid by averaging all polar data points within each HRAP bin.

3) For each HRAP bin in the RFC area, check if the bin lies within the union of the effective
coverages of all radars for which DPA products were available for that hour.  If it does,
choose the radar rainfall estimate sampled at the lowest height as the ‘best’ for that bin for that
hour.  If not, no radar rainfall estimate is available at that bin for that hour.

The motivation for the above mosaicking strategy is to seek radar rainfall estimates from the
‘lowest unobstructed beam’ (O’Bannon 1997) in areas of coverage overlap.  For further details,
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the reader is referred to Breidenbach et al. (1999, 2000).

b. Rain Gauge Data

The rain gauge data used are the hourly data that were operationally available to the RFC
during the period (see Fig 1 for locations).  Real-time rain gauge data are subject to numerous
sources of error; mechanical malfunction, electronic malfunction (including transmission errors),
(lack of) exposure, wind, freezing and thawing, biological contamination, inaccurate geo-
registration, etc. (see also Steiner et al. 1999).  As such, in addition to automatic checks, the rain
gauge data should ideally undergo visual spatio-temporal checks with the aid of radar rainfall
data (and, preferably, satellite data as well).  Visual examination of large quantities of data,
however, is an extremely labor-intensive task and was well beyond the scope of this work.  As a
compromise, we performed only the following very simple, but stringent, statistical check in this
work:
1) for each gauge location, extract the time series of hourly gauge and radar rainfall for the cool

and warm seasons,
2) for each season and for each gauge location, calculate the probabilities of detection of rainfall,

the indicator and conditional cross-correlation coefficients between gauge and radar rainfall,
and the ratio of the sum of gauge rainfall to that of radar rainfall, referred to herein as the
gauge-specific bias,

3) for each season, apply thresholds to the statistics calculated above to screen out ‘apparently
bad’ gauges, and

4) for each season and for each ‘apparently good’ gauge, screen out apparent outliers in the
gauge measurements by applying a threshold to the absolute difference between the gauge and
the gauge-specific bias-adjusted radar rainfall.

In Steps 1 through 3, whenever the integrity of the gauge was in doubt, we chose to err on
the side of caution and threw out the entire data set from that gauge for that season.  Hence, it is
possible that some of the natural variabilities of rainfall may have been lost and/or the sampling
errors in the rain gauge measurements (see Section 2) may be under-represented in the surviving
data set.

4.6 Parameter Estimation

The proposed procedure, as formulated in Section 4, has as many as ten adaptable
parameters (excluding the number of memory spans and their values, which are considered to be
fixed parameters).  Eight of them pertain to the semi-variogram models of gauge and radar
rainfall; the types of the model (limited to spherical, gaussian, and exponential in this work), the
sills, Cg and Cr (mm2), the nugget effects, :g and :r (mm2), and the correlation scales, Lg and Lr

(HRAP).  The other two are the radius of influence, RI (HRAP), and the threshold for the
effective number of positive radar-gauge pairs, Nt (see Eq.(14)).

Ideally, the semi-variograms of gauge and radar rainfall should be estimated locally at
every hour, so that the spatio-temporal variations in the spatial variability of rainfall may be
accounted for in the estimation process.  In reality, however, such fine-scale modeling of semi-
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variograms is rarely (if ever) possible because of lack of rain gauge measurements.  As such, we
use the climatological semi-variograms instead, i.e., the semi-variograms estimated from all data
points within the entire area of interest and within the entire period of record available (Bastin et
al. 1984, Lebel et al. 1987, Lebel and Laborde 1988, Seo 1996).  Fig 2 shows the climatological
semi-variograms of radar and gauge rainfall for the cool and warm seasons over the ABRFC area
(see Fig 1) as estimated from the one-year data in the parameter estimation period.  In the figure,
the markers ‘1' through ‘8' denote the directional experimental semi-variograms along the angles
of 0, 26.6, 45, 63.4, 90, 116.6, 135, and 153.4 degrees (counterclockwise from due east).  Also
shown in each figure is the best weighted least-squares fit, whose parameters are summarized in
Table 1.  It is important to note that, in estimating the experimental semi-variograms, we used
only the collocated radar-gauge pairs.  The reason for this selective sampling of radar data is that
the performance of the bias correction procedure is rather sensitive to the relative magnitude of
Lg and Lr (see Section 8).  As such, sampling biases in the experimental semi-variograms of
gauge and radar rainfall must be avoided, even if it may mean reducing the reliability of the
experimental semi-variogram of radar rainfall due to reduced sample size.

Use of the climatological semi-variograms implies that the variances of radar and gauge
rainfall are modeled as space- and time-invariant (i.e. intra-seasonally).  Then, it can be easily
shown that r0k*k (see Eq.(11)) and g0k*k are independent of Cg and Cr, and therefore we may,
without any loss of generality, replace the nugget effects, :g and :r, with the normalized nugget
effects, :g/Cg/(ng) and :r/Cr (/nr), respectively, set Cg=Cr=1, and define Qrk and Qgk in Eqs.(13)
and (D2), respectively, as error correlation (as opposed to covariance) matrices.  Setting sills to a
constant, however, leaves quantification of the relative magnitude of the sampling uncertainty in
the Fisher estimate (see Eq.(B2)) completely at the mercy the Fisher error variance (see (B1)),
even though the latter may not be a realistic representation of the effect of sample size on the
sampling uncertainty.  As such, we express Cg and Cr as an explicit function of the sample size in
this work to explicitly account for the uncertainty due to lack of sample size:

Cg=Cr=1/(Nk+1)< (15)

where Nk denotes the number of collocating positive radar-gauge pairs within the radius of
influence, RI (HRAP), at hour k, and < is a nonnegative number.  The general form of the
dependence of sampling uncertainty on sample size as expressed in Eq.(15) is supported by
Rodriguez-Iturbe and Mejia (1974) and used by Smith and Krajewski (1991).  The fixed
parameter < is estimated via sensitivity analysis similar to those performed for estimation of free
adaptable parameters (see Section 8).  The analysis indicates that, over [0,2], a larger (smaller) <
yields a somewhat smaller mean error (root mean square error) in the bias-corrected radar rainfall
estimates but only at the expense of a somewhat larger root mean square error (mean error), and
that <=1 is a reasonable compromise.  As such, < was fixed at unity throughout the rest of this
work.  It is worth noting that, with <=1, the local bias correction procedure is reduced to the
mean field bias correction procedure (Seo et al. 1999) if both the radar and gauge rainfall are
white-noise in space.

The use of climatological semi-variograms also implies that the second-order spatial
statistics of rainfall are assumed to be space- and time-invariant.  In reality, however, the
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statistics vary in space and time.  Also, the majority of the data points used in their estimation
comes from light to medium rainfall events.  As such, the climatological semi-variograms are not
in general reflective of the spatial structure of rainfall in heavy rainfall events.  For these reasons,
the local bias-corrected estimates based on the climatological semi-variograms are in general
subject to rainfall amount-dependent (i.e. conditional) biases, even though they may be free of
mean bias (i.e. bias averaged over all ranges of rainfall amount).  As such, some form of
sensitivity analysis or parameter optimization (using the climatological semi-variogram
parameters as the initial guess) is generally necessary, not only to pin down the optimal
parameter settings but also to ascertain the nature of the conditional bias and its dependence on
parameter settings.  In Section 8, we describe how a series of sensitivity analysis is performed for
such purposes.

The radius of influence, RI (HRAP), represents the length scale at which the spatial
process may be considered locally homogeneous.  It defines the circular (under the isotropy
assumption) neighborhood of estimation centered at the bin where the bias estimate is sought. 
All gauge measurements and collocating radar rainfall data within the circle are then considered
as neighbors of G0k and R0k (see Eq.(7)), and are used in the estimation of g0k*k and r0k*k,
respectively.  Determination of this scale based on local homogeneity considerations, however, is
neither straightforward (Journel and Huijbregts 1978) nor necessarily desirable as explained
below.  In gauge-sparse areas, it is preferable to have as large a radius of influence as possible,
regardless of the scale at which local homogeneity may or may not actually hold, so that the bias
estimates do become available over as large an area as possible.  Hence, as long as the
performance of the bias correction procedure does not deteriorate and the computationally burden
remains bearable, RI should be set to a largest possible value.  As such, RI is treated as a free
parameter in this work and estimated via sensitivity analysis (see Section 8).

4.7 Validation

To evaluate the proposed procedure, true validation is performed using the data from the
two-year validation period.  The steps involved are as follows:
1) specify the density of the gauge network,
2) divide the operational gauge network (see Fig 1) into two; the estimation network, which has

the density specified in Step 1, and the validation network, which is given by the operational
network minus the estimation network,

3) for each hour of the two-year validation period, perform mean field and local bias correction
at rain gauge locations in the validation network using the gauge measurements from the
estimation network and the collocated radar rainfall data,

4) collect the raw, mean field bias-corrected, and local bias-corrected radar rainfall estimates at
the gauge locations in the validation network and the (now revealed) rain gauge
measurements, and

5) calculate performance measures.
In Step 1, two densities are assumed for the estimation network; one-half and one-fourth of

that of the full operational gauge network.  They are referred to as the ½ and 1/4 networks, and
have 230 and 115 gauges, respectively, that are randomly selected from the operational network
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(see Fig 1).  In Step 4, the mean field bias correction procedure used is that of Seo et al. (1999),
in which the number of memory spans used is 10, and their settings are 1, 2, 4, 8, 16, 32, 64, 128,
256, and 106 (hr).  The same number and settings are also used for local bias correction.  The
threshold for the effective number of radar-gauge pairs used in the mean field bias correction
procedure (i.e., the equivalent of Nt in this work) was 16 for both seasons based on Seo et al.
(1999).  The performance measures used in Step 5 are the same as those used in Seo et al. (1999);
the ratio of the sum of gauge rainfall to that of radar rainfall (RATIO), the root mean square error
of radar rainfall (RMSE) (or, alternatively, the mean square error (MSE)), the cross-correlation
coefficient between gauge and radar rainfall (CORR), and the maximum errors of under- and
overestimation by radar rainfall (MAXEU and MAXEO, respectively).

Because local bias-corrected radar rainfall is an areal average whereas rain gauge data are
point measurements, the rain gauge measurements from the validation network should ideally be
converted to areal averages before calculating the performance measures.  Although such a
conversion via, e.g., ordinary block kriging, should reduce sampling errors, it is bound to
increase estimation errors.  As such, no attempts were made in this work to convert the rain
gauge measurements to bin-averaged gauge rainfall estimates.  Hence, all results presented in the
next section are based on validation of areally-averaged (radar) rainfall against point (gauge)
rainfall.  The consequence of ignoring this difference in spatial sampling scale of rainfall depends
on the performance measure.  Because it is based on long-term accumulations, RATIO should
not be affected at all.  For MSE, it may be shown (see Appendix E) that, even though the
absolute magnitude of MSE is subject to sampling errors due to micro-scale variability of
rainfall, that of reduction in MSE is not, and that percent reduction in MSE based on point
validation is a conservative estimate of that based on areal validation.  (The above results do not,
however, hold for RMSE.)  Because point rainfall has larger variability than the areally averaged,
MAXEO and MAXEU based on point validation should also be conservative estimates of those
based on areal validation.

4.8 Results

Because the number of parameters involved is rather large, it is difficult to assess the
sensitivity of the proposed procedure to all parameters through one large analysis.  Instead, here
we performed a series of smaller sensitivity analyses, each involving fewer parameters.  The first
set of parameters examined was RI and Nt.  Using the climatological semi-variogram parameters
for the types of the variogram model for radar and gauge rainfall, ng, nr, Lg, and Lr, true validation
was performed at various combinations of parameter settings of RI and Nt.  The contour plots of
RATIO, RMSE, CORRE, MAXEO, and MAXEU of the local bias-corrected estimates were then
examined as functions of RI and Nt.  They indicate that RI has a rather straightforward influence
on the correction procedure: a larger RI improves the performance, but, beyond RI.60 (HRAP),
the improvement is negligible.  As such, we fixed RI at 60 (HRAP) (corresponding to
approximately 240 km) throughout the rest of this work.  Unless mentioned otherwise, all results
presented in this section are based also on the ½ gauge network (see Section 7).

Fig 3 shows the five performance measures for the hourly local bias-corrected estimates
based on the climatological semi-variogram parameters.  For comparison, those for the raw radar
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rainfall and mean field bias-corrected estimates are also shown.  Figs 3a and 3b show RATIO
and RMSE of the raw (denoted as ‘r’), mean field bias-corrected (denoted as ‘m’), the local bias-
corrected (denoted as ‘1' through ‘6') radar rainfall estimates for cool and warm seasons,
respectively.  The markers ‘1' through ‘6' signify that the local bias-corrected estimates are based
on Nt settings of 2, 4, 8, 16, 32, and 64, respectively (see Section 4).  The perfect estimates would
locate (RATIO,RMSE) at (1,0) in the figures, where for reference the line of perfect RATIO (i.e.
of unity) is also shown.  Fig 3c shows CORRE.  The perfect estimates would locate (cool-season
CORRE,warm-season CORRE) at (1,1).  Figs 3d and 3e show MAXEU (defined as the negative
of min{estimate-gauge rainfall}) and MAXEO (defined as max{estimate-gauge rainfall}) for
cool and warm seasons, respectively.  The perfect estimates would locate (MAEXEU,MAXEO)
at (0,0).  Fig 3 may be summarized as follows: 1) local bias correction based on climatological
semi-variograms is very effective in removing the mean bias (i.e. bias averaged over all amounts
of rainfall), 2) temporal smoothing is important in the warm season, particularly to reduce RMSE
and MAXEO, 3) Nt settings of 8 and 32 provide appropriate levels of temporal smoothing for
estimation of hourly rainfall in cool and warm seasons, respectively, and 4) at such settings of Nt,
the mean performance (i.e. performance averaged over all ranges of rainfall amount) of the
proposed procedure based on the climatological semi-variograms is generally superior,
particularly in the cool season, to that of the mean field bias correction procedure (Seo et al.
1999).

Fig 3, however, pertains mostly to the performance of the procedure averaged over all
ranges of rainfall depth.  As noted in Section 6, local bias-corrected estimates based on
climatological semi-variograms are subject to conditional (i.e. on the amount of rainfall being
estimated) biases.  Indeed, examination of the scatter plots of daily rainfall amounts between the
local bias-corrected estimates and the gauge measurements indicates that the local bias-corrected
estimates associated with Fig 3 tend to significantly underestimate large rainfall amounts (and,
conversely, overestimate small rainfall amounts).  To examine the sensitivity of the conditional
(i.e. on the amount of rainfall being estimated) performance of the correction procedure to the
semi-variogram parameters, true validation was performed at various combinations of the types
of the model, ng, nr, Lg, and Lr.  The resulting performance measures were then examined in the
form of contour plots for all pairwise combinations of the parameters.  The analysis indicate that:
1) the semi-variogram models of gauge and radar rainfall should be of the same type (e.g.
exponential, gaussian, or spherical) even if it may not best-fit both experimental semi-
variograms, and 2) the performance of the proposed procedure is much more sensitive to the
correlation scale parameters, Lg and Lr, than to the normalized nugget effect parameters, ng and
nr.  The latter point is illustrated in Fig 4, in which the contour plots of RMSE are shown as
functions of Lg and ng for cool and warm seasons.

In light of the above observations, we chose the exponential semi-variogram model for
both radar and gauge rainfall, set ng=nr.0, and made true-validation runs at various combinations
of Lg and Lr, each parameter assuming values of 1, 3, 5, 7, and 9 (HRAP).  Figs 5 and 6 show the
resulting contour plots of RATIO and RMSE of the hourly local bias-corrected estimates for all
amounts of gauge rainfall and for amounts exceeding 25.4 mm as functions of Lg and Lr for cool
and warm seasons, respectively.  All figures are based on Nt=8, which was found to provide an
appropriate level of temporal smoothing for estimation of daily amounts in both seasons.  Figs 5a



14

and 5b indicate that, in the cool season, the minimum RMSE-producing combinations of Lg and
Lr are not necessarily the best from the unbiasedness point of view.  Because the overriding
objective of bias correction is to achieve RATIO.1, the optimal combination of Lg and Lr should
be located where RMSE is the smallest in Figs 5b and 5d given RATIO.1 in Fig 5a.  This results
in the cool-season setting of (Lg,Lr).(5,3) (HRAP).  For the warm season, the minimum RMSE-
producing combinations of Lg and Lr in Figs 6b and 6d also produce RATIO.1 in Fig 6a.  Hence,
the optimal parameter combination may be found where RMSE is the smallest in Figs 6b and 6d. 
This results in the warm-season setting of (Lg,Lr).(1,1) (HRAP), though (Lg,Lr).(3,3) (HRAP) is
also a possibility.

Note in Figs 5c and 6c that, even at these ‘optimal’ parameter settings, significant biases
still exist for estimation of large rainfall amounts in both seasons.  These conditional biases arise
from lack of sampling and from the use of a linear estimator even though rainfall has a highly
skewed distribution.  The magnitude of the conditional bias at ABRFC should in reality be much
smaller than that suggested by Figs 5c and 6c because the full gauge network, rather than the ½
network used in the true validation above, is available operationally for estimation of local bias. 
Conceptually, use of nonlinear estimation should reduce the conditional bias (see, e.g., Seo
1996).  Given, however, that nonlinear estimation requires parameterization, be it implicit (as,
e.g., in Artificial Neural Networks) or explicit (as, e.g., in disjunctive (Journel and Huijbregts
1978) or indicator kriging (Deutsch and Journel 1992)), of statistical moments that are of higher
order than that of the bias itself, it is seen unlikely that nonlinear estimation can be used
successfully for real-time bias correction.

With the (near-) optimal parameter settings identified above, true validation was performed
using the two-year validation data set.  Fig 7 shows the scatter plots of daily amounts of the raw,
mean field bias-corrected, and local bias-corrected radar rainfall estimates against gauge rainfall
for the cool and warm seasons.  They indicate that the local bias-corrected estimates are generally
better, particularly in the cool season, than the mean field bias-corrected estimates.  A number of
gross overestimates seen in Fig 7b are associated with a bright band event for which mean field
bias was estimated mostly from the radar-gauge pairs in the far range, where radar tends to
severely underestimate rainfall due to sampling of ice particles above the melting layer. 
Application of the mean field bias everywhere in the effective coverage of the radar consequently
results in gross overestimation of mean field bias-corrected radar rainfall in the mid-range, where
radar tends to overestimate rainfall due to bright band enhancement.

Table 2 shows the summary statistics from the validation run.  They are tabulated
according to the season (cool and warm), to the temporal scale of aggregation (hourly and daily),
and to the amount of rainfall being estimated (all amounts and large amounts only).  The
statistics confirm the observations made in Fig 7 that the local bias-corrected estimates are
generally superior, particularly in the cool season, to the mean field bias-corrected estimates. 
The rather poor performance of the mean field bias correction procedure in removing the mean
bias in the cool season is attributed to a number of prominent bright band events in the validation
period.  The local bias-corrected estimates, on the other hand, are free of mean bias in both cool
and warm seasons.  Note that local bias correction also significantly improves estimation skill
over mean field bias correction in the cool season.  For example, the percent reductions in MSE
of daily amounts by the local bias- and mean field bias-corrected estimates over the raw radar
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rainfall are about 46 and 27 (%), respectively, in the cool season, and 31 and 26 (%),
respectively, in the warm season.

In many parts of the country, the operational (near-) real-time hourly rain gauge network is
sparser than the ½ network on which the results presented above are based.  To evaluate the
performance of the correction procedure under a sparser network, validation runs were also made
using the 1/4 network (see Section 7).  The semi-variogram parameters used were the same as
those used in the ½ network case.  The results are summarized in Table 3, which is to be
compared with Table 2.  They indicate that, under a sparser network, the performance of the local
bias correction procedure generally deteriorates, but remains superior, particularly in the cool
season, to mean field bias correction.

4.9 Conclusions and Future Research Recommendations

A procedure for real-time correction of spatially nonuniform bias in radar rainfall data
using rain gauge measurements is described.  Based on operational experience with the existing
bias correction procedures used in the National Weather Service (NWS), the proposed procedure
is intended to be a generalized local bias estimator that may be used under varying conditions of
gauge network density and types of rainfall.  For parameter estimation and evaluation of the
procedure, WSR-88D Digital Precipitation Array (DPA) products and operational hourly rain
gauge data were used from the Arkansas-Red Basin River Forecast Center (ABRFC) area
covering May 1, 1996, through April 30, 1999.

Parameter estimation was carried out via true validation using data from the first year in a
series of sensitivity analyses.  The results indicate that 1) the proposed procedure is most
sensitive to the spatial correlation scales of gauge and radar rainfall, and 2) as such, site-specific
sensitivity analysis or parameter optimization is necessary to pin down the optimal parameter
settings and to ascertain the nature of the dependence of the conditional (i.e. on the amount of
rainfall being estimated) performance of the procedure on the parameter settings.

Evaluation of the proposed procedure was carried out via true validation using data from
the last two years.  The results indicate that the proposed procedure is generally superior,
particularly in the cool season, to the mean field bias correction procedure (Seo et al. 1999): the
proposed procedure is very effective in removing mean bias (i.e. bias averaged over all amounts
of rainfall) for both cool and warm seasons, and reduces the mean square error (MSE) of daily
rainfall, relative to that of the raw radar rainfall estimates, by at least 34 to 46 and 23 to 31 (%)
(16 to 27 and 17 to 26 (%) for mean field bias correction) in the cool and warm seasons,
respectively, over the range of rain gauge network density examined in this work.

The sensitivity of the proposed procedure to the parameters suggests that the biggest
improvement is most likely to come from further stratification of the correlation scale parameters
(including accounting of anisotropy) beyond that based on seasonality alone.  Identification of the
attributes that lead to more skillful stratification of the parameters and determination of the
space-time scale at which such stratification may remain practical warrant further investigation.
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APPENDIX A
Local Bias Correction Procedure Used in Process 1 (P1)

In the simplest terms, the local bias correction procedure used in P1 may be described by
the following:

        3             3
rc=r0 E wi $i + E wi *i (A1)
       i=1          i=1

where

        � 1 if gi/ri > $t
$i = ; (A2)
        � gi/ri if gi/ri # $t

        � gi-ri if gi/ri > $t
*i = ; (A3)
        � 0 if gi/ri # $t

In Eq.(A1), rc denotes the bias-corrected radar rainfall (mm), r0 denotes the raw radar rainfall at
the bin centered at u0 (mm), wi denotes the weight given to the radar-gauge pair at the i-th vertex
in the triangle of radar-gauge pairs that encloses u0, $i denotes the multiplicative sample bias
from the i-th radar-gauge pair, and *i denotes the additive sample bias from the i-th radar-gauge
pair.  In Eqs.(A2) and (A3), gi and ri denote the gauge rainfall measurement (mm) and the
collocating radar rainfall estimate (mm), respectively, at the i-th vertex in the enclosing triangle,
and $t, an adaptable parameter, denotes the threshold for the multiplicative sample bias, gi/ri,
i=1,2,3.  The neighboring radar-gauge pairs are identified by “triangulation,” which connects all
available radar-gauge pairs into a mesh of triangles.  The weights, wi, i=1,2,3, sum to unity and
are proportional to the distance to the neighboring radar-gauge pairs in the enclosing triangle.

APPENDIX B
Identity Between the Fisher Estimate of Eq.(10) and the Ordinary Kriging Estimate

Here we show that, under Eq.(13), the Fisher estimate (Schweppe 1973) of R0 in Eq.(10)
(the time index has been dropped for notational brevity), i.e., the unbiased minimum-error-
variance estimate of R0 given that nothing is known a priori about its statistics, is identical to the
ordinary kriging estimate.  The Fisher estimate of R0, R0

*, and the associated estimation variance,
E0, are given by (Schweppe 1973):

E0 = (HT Q-1 H)-1 (B1)

R0
* = E0 H

T Q-1 Z (B2)

The terms in the above expressions are defined in Section 4.  We rewrite Eq.(B2) as;
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  R0
*

=(7H)-17Z (B3)
= WZ (B4)

where

7/HTQ-1 (B5)
          n
W/7/E 8i (B6)
         i=1

In the above, n denotes the number of neighbors used in the estimation and 8i denotes the i-th
entry in 7.  Post-multiplying Q to Eq.(B5) and taking transpose, we have:

QT7T=H (B7)

With Eq.(13), (B7) may be written as:

 � + 1...1 ,  + R11...R1n , + R10...R10 ,  + R10...Rn0 ,�    + 81 ,    + 1 ,
**     .   *  *       .       * *       .       *  *       .       **  *   .  *    * .  *
**     .   *+*       .       *-*       .       *-*       .       **@ *   .  * = * .  * (B8)
**     .   *  *       .       * *       .       *  *       .       **  *   .  *    * .  *
 � . 1...1 -  . Rn1...Rnn - . Rn0...Rn0 -  . R10...Rn0 -�    . 8n -    . 1 -

where  Rij denotes the ij-th entry in the error covariance matrix Q.  The above linear system may
be rearranged into the following ordinary kriging system:

+ R11...R1n ,  + w1 ,   + 1 ,       + R10 ,
*       .       *  *   .  *   *  . *       *   .   *
*       .       *  *   .  * - *  . *: = *   .   * (B9)
*       .       *  *   .  *   *  . *       *   .   *
. Rn1...Rnn -  . wn -   . 1 -       . Rn0 -

In the above, wi denotes the i-th entry in the weight vector W in (B6) (note that by definition, wi,
i=1,...,n, sum to unity), and the Lagrange multiplier : is given by:

      n                   n
: = E Ri0 wi + 1/ E 8i - 1 (B10)
     i=1                i=1
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APPENDIX C
Non-Recursive Form of the Exponential Smoothing Solution

Given the initial conditions r00*0=0 and Er00*0
-1=0, Eqs.(11) and (12) may be rewritten in the

following non-recursive forms:

           k  +    k            ,
r0k*k = E  *Ti ( {1-Tj} * R0i

* (C1)
         i=1 .  j=i+1       -

              k
E0k*k

-1 = E e-(k-i)/" E0i
-1 (C2)

             i=1

In the above, E0i and R0i
* are given by Eqs.(B1) and (B2), respectively, and the weight given to

R0i
*, Ti, is given by:

Ti = E0i
-1/E0i* i

-1 (C3a)

    = E0i
-1/(e-1/" E0(i-1)*(i-1)

-1 + E0i
-1) (C3b)

Eqs.(C1) through (C3) state the exponential smoothing solution for R0k, r0k*k, is a linearly
weighted average of R0i

*, i=1,...,k, i.e., a temporal average of ordinary kriging estimates at all
hours up to and including the current hour as linearly-weighted according to the ‘age’ of and the
magnitude of the error variance associated with the estimates.  Note that, because the weights
sum to unity, i.e., Ek

i=1 Ti (
k

j=i+1 {1-Tj}=1, r0k*k is also unbiased in the mean sense.

APPENDIX D
Exponential Smoothing of Bin-Averaged Gauge Rainfall

Using (Point) Gauge Measurements

The observation equation for the bin-average gauge rainfall centered at u0 at hour k, G0k, is
given by:

Zgk = Hk G0k + Vgk (D1)

where the observation vector, Zgk, the structure vector, Hk, the unknown bin-averaged gauge
rainfall centered at u0, G0k, and the error vector, Vgk, are given by [g1k,g2k,...,g(nk)k]

T, [1,1,...,1]T,
5A05

-1 IA0 Pk(u)du, and [G1k - 5A05
-1 IA0 Pk(u)du, G2k - 5A05

-1 IA0 Pk(u)du,..., G(nk)k - 5A05
-1 IA0

Pk(u)du]T, respectively.  In the above, gik denotes the i-th rain gauge measurement at hour k, and
P(u) denotes the point hourly gauge rainfall at location u within the bin.  The ij-th entry in the
error covariance matrix of Vgk, Qgk, is then given by:
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  Rgijk

= Cov[Gik-5A05
-1IA0 Pk(u)du,Gjk-5A05

-1IA0 Pk(u)du] (D2a)

= 5A05
-2IA0IA0 Cov[Pk(u),Pk(v)]dudv

- 5A05
-1IA0 Cov[Gik,Pk(u)]du

- 5A05
-1IA0 Cov[Pk(u),Gjk]du

+ Cov[Gik,Gjk] (D2b)

= 5A05
-1IA0 ([Gik,Pk(u)]du + 5A05

-1IA0 ([Pk(u),Gjk]du

- 5A05
-2IA0IA0 ([Pk(u),Pk(v)]dudv - ([Gik,Gjk] (D2c)

where Cov[] and ([] denote the covariance and the semi-variogram, respectively.

APPENDIX E
Effect of Using (Point) Gauge Measurements, in Lieu of Areally-Averaged Gauge Rainfall,

on Mean Square Error Calculations

The mean square error of raw radar rainfall estimates with respect to the (point) gauge
measurements, MSE[Rr-P(u)]is an estimate of E[{Rr-P(u)}2], where Rr denotes the raw radar
rainfall and P(u) denotes the gauge rainfall at some point u within the radar bin.  We may rewrite
E[{Rr-P(u)}2] as:

E[{Rr-P(u)}2]=E[{Rr-G+G-P(u)}2] (E1)

In the above, G denotes the areally averaged gauge rainfall over the radar bin, i.e., G=5A05
-1IA0

P(u) du, where A0 denotes the area of the bin.  Then, under the assumption that the estimation
error in the raw radar rainfall estimate, Rr-G, and the sampling error in the (point) gauge
measurement due to micro-scale variability of rainfall, G-P(u), are linearly independent (Drake
1967: see Ciach and Krajewski 1999 for justification), we may write:

E[{Rr-P(u)}2].E[(Rr-G)2]+Var[G-P(u)] (E2)

Likewise, under the similar assumption that Rc-G and G-P(u) are linearly independent, where Rc

denotes the bias-corrected radar rainfall, we may write:

E[{Rc-P(u)}2].E[(Rc-G)2]+Var[G-P(u)] (E3)

From Eqs.(E2) and (E3), we then have:
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E[{Rr-P(u)}2]-E[{Rc-P(u)}2].E[(Rr-G)2]-E[(Rc-G)2] (E4)

E[{Rr-P(u)}2]-E[{Rc-P(u)}2]     E[(Rr-G)2]-E[(Rc-G)2]
)))))))))))))))))))  <  ))))))))))))))) (E5)
           E[{Rr-P(u)}2]                           E[(Rr-G)2] 

In other words, the true reduction in mean square error based on bin-averaged gauge rainfall,
MSE[Rr-G]-MSE[Rc-G], is approximately the same as the apparent reduction, MSE[Rr-P(u)]-
MSE[Rc-P(u)], based on (point) rain gauge measurements (Eq.(E4)), and the true percent
reduction in mean square error based on bin-averaged gauge rainfall is larger than the apparent
percent reduction based on (point) rain gauge measurements (Eq.(E5)).
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Table 1. Climatological semi-variogram parameters.
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

season sensor type L1 (HRAP) C2 (mm2) :3 (mm2)
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

cool radar sp4 12.105 26.9 0.0
gauge ex6 5.02 38.8 0.0

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

warm radar ex 3.36 60.2 0.0
gauge ex 3.50 76.4 0.0

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

1 spatial correlation scale
2 sill
3 nugget effect
4 spherical model
5 corresponds to 6.13 (HRAP) in the exponential model
6 exponential model

Table 2a. Performance measures for hourly estimates (gauge rainfall > 0, Nt=8, ½ network).
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

season type RATIO RMSE1 CORR MAXEU2 MAXEO2

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw3 1.35 3.49 0.71 36.3 32.4
Cool mfb4

0.93 3.74 0.75 33.9 51.4
lb5 1.00 3.33 0.78 42.3 44.0

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.07 4.48 0.73 48.0 47.1
Warm mfb 1.03 4.22 0.76 39.8 50.6

lb 1.00 4.22 0.77 33.4 56.2
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

1 in mm2

2 in mm
3 uncorrected radar rainfall estimate
4 mean field bias-corrected radar rainfall estimate
5 local bias-corrected radar rainfall estimate



Table 2b. Performance measures for hourly estimates (gauge rainfall > 25.4 mm, Nt=8, ½
network).

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

season type RATIO RMSE CORR MAXEU MAXEO
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.62 16.0 0.51 36.3 13.0
Cool mfb 1.13 12.9 0.44 33.9 43.9

lb 1.12 12.2 0.51 42.3 36.5
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.43 15.6 0.49 48.0 40.2
Warm mfb 1.43 14.7 0.49 39.8 32.3

lb 1.35 14.5 0.53 33.4 56.2
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Table 2c. Performance measures for daily estimates (gauge rainfall > 0, Nt=8, ½ network).
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

season type RATIO RMSE CORR MAXEU MAXEO
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.35 9.33 0.82 107.1 64.7
Cool mfb 0.93 7.98 0.87 82.9 166.0

lb 1.00 6.86 0.90 74.0 65.3
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.08 8.25 0.80 70.5 109.6
Warm mfb 1.04 7.08 0.86 50.7 50.6

lb 1.00 6.87 0.87 46.2 55.4
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Table 2d. Performance measures for daily estimates (gauge rainfall > 50.8 mm, Nt=8, ½
network).

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

season type RATIO RMSE CORR MAXEU MAXEO
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.70 40.5 0.68 107.1 64.7
Cool mfb 1.09 22.6 0.76 82.9 71.4

lb 1.12 22.9 0.77 74.9 47.4
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.33 30.2 0.51 70.5 109.6
Warm mfb 1.23 21.4 0.64 50.7 26.0

lb 1.16 20.4 0.64 46.2 55.4
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))



Table 3a. Performance measures for hourly estimates (gauge rainfall > 0, Nt=16, 1/4 network).
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

season type RATIO RMSE CORR MAXEU MAXEO
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.34 3.48 0.70 38.5 36.8
Cool mfb 0.89 3.98 0.72 32.1 49.5

lb 0.98 3.56 0.74 43.9 46.0
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.08 4.52 0.73 41.9 47.2
Warm mfb 1.05 4.41 0.74 39.1 59.5

lb 1.02 4.36 0.75 38.7 62.7
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Table 3b. Performance measures for hourly estimates (gauge rainfall > 25.4 mm, Nt=16, 1/4
network).

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

season type RATIO RMSE CORR MAXEU MAXEO
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.59 15.8 0.47 38.5 13.8
Cool mfb 1.10 13.0 0.44 32.1 40.1

lb 1.19 12.7 0.47 43.9 35.7
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.44 15.5 0.46 41.9 40.2
Warm mfb 1.46 15.5 0.43 39.1 37.8

lb 1.43 14.7 0.48 38.7 39.3
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Table 3c. Performance measures for daily estimates (gauge rainfall > 0, Nt=16, 1/4 network).
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

season type RATIO RMSE CORR MAXEU MAXEO
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.34 9.14 0.82 107.1 64.7
Cool mfb 0.89 8.37 0.86 88.8 108.6

lb 0.98 7.43 0.88 86.5 70.6
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.08 8.26 0.80 117.4 109.6
Warm mfb 1.06 7.51 0.84 76.7 59.5

lb 1.02 7.25 0.85 75.9 62.7
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))



Table 3d. Performance measures for daily estimates (gauge rainfall > 50.8 mm, Nt=16, 1/4
network).

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

season type RATIO RMSE CORR MAXEU MAXEO
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.68 38.7 0.67 107.1 64.7
Cool mfb 1.06 23.1 0.74 88.8 68.2

lb 1.14 22.3 0.78 86.5 65.3
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

raw 1.37 30.5 0.47 117.4 109.6
Warm mfb 1.30 23.8 0.58 76.7 41.3

lb 1.27 22.3 0.61 75.9 49.4
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))



List of Figure Captions

Fig 1 Radar (call letters) and rain gauge locations (dots) within and in the vicinity of the
ABRFC’s service area (dotted line)

Fig 2 a) experimental semi-variograms (see text for explanation of symbols) of cool-season radar
rainfall and the best weighted least-squares fit (solid line), b) same as a), but for cool-
season gauge rainfall, c) same as a), but for warm-season radar rainfall, and d) same as a),
but for warm-season gauge rainfall

Fig 3 a) RATIO and RMSE of the hourly raw (‘r’), mean field bias-corrected (‘m’), and local
bias-corrected (‘1' through ‘6': see text for explanation) radar rainfall estimates in the cool
season, b) same as a), but in the warm season, c) cool- and warm-season CORRE of the
hourly raw (‘r’), mean field bias-corrected (‘m’), and local bias-corrected (‘1' through ‘6':
see text for explanation) radar rainfall estimates, d) same as a), but for MAXEU and
MAXEO, e) same as b), but for MAXEU and MAXEO

Fig 4 a) example of the contour plot of RMSE of hourly local bias-corrected radar rainfall
estimates as a function of Lg and ng for the cool season, b) same as a), but for the warm
season

Fig 5 a) contour plot of RATIO of hourly local bias-corrected radar rainfall estimates for all
amounts of gauge rainfall as a function of Lg and Lr for the cool season, b) same as a), but
for RMSE, c) same as a), but for gauge rainfall amounts exceeding 25.4 (mm), d) same as
b), but for gauge rainfall amounts exceeding 25.4 (mm)

Fig 6 a) same as Fig 5a, but for the warm season, b) same as Fig 5b, but for the warm season, c)
same as Fig 5c, but for the warm season, d) same as Fig 5d, but for the warm season

Fig 7 a) scatter plot of daily rainfall amounts in the cool season between gauge and raw radar
rainfall, b) same as a), but for the warm season, c) same as a), but between gauge and mean
field bias-corrected radar rainfall, d) same as c), but for warm season, e) same as a), but
between gauge and local bias-corrected radar rainfall, f) same as e), but in the warm season
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